

INTRODUCTION & ENVIRONMENT Pg. 1

Linux Essentials - Module 1
INTRODUCTION TO THE LINUX ENVIRONMENT

MODULE OBJECTIVE

• Become familiar with the Linux operating system, the Linux shell, and

sources of help

LESSON OBJECTIVES

• Learn what Linux is - Define kernel, shell, desktop, user, and process

• Understand basic shell features and be familiar with the shell

environment.

• Remote Access

• Use online documentation to display manual information.

INTRODUCTION & ENVIRONMENT Pg. 2

WHAT IS LINUX?

Linux is a variant of the UNIX operating system. UNIX has become a very popular O/S
in the networking world, in part, due to its strong built-in communications handling
ability. UNIX has been implemented on a wider range of machines than any other
operating system. One thing that is important to remember is that there is no standard
UNIX operating system. 'UNIX' has actually become a generic term for many different
implementations of the original AT&T Bell Labs UNIX code, which dates back to the
sixties. Most UNIX implementations are written specifically for a particular
manufacturer's hardware, and the operating system is bundled with their computer
systems. The name "UNIX" and the definition of UNIX are now owned by Novell, who
has turned control over to the neutral organization X/Open. The version of UNIX being
employed widely within the NWS for a number of national systems as well as local is
Linux, mostly Red Hat Linux (but there are others). Linux, in various flavors, is an open-
systems form derived from various UNIX implementations.

Linux is a multitasking operating system. A user can perform more than one task at a
time. These tasks or processes can be run in the background so that the user can
continue with other activities. For example, a user could be sorting a file or making a
calculation in the background at the same time they are editing a file.

Linux is a multi-user operating system. Many users can be using the same machine.
This is directly related to multitasking since each user has their own set of processes.
The multi-user aspect allows groups of people to work easily together, sharing files and
utilities.

There are several sources for the Linux operating system itself and a myriad of sources
for Linux-based applications. Let us briefly consider major suppliers.

Debian GNU/Linux
The GNU Project was launched in 1984 to develop a complete UNIX-style operating
system as free software: the GNU system. (GNU is a recursive acronym for ‘GNU’s Not
UNIX’ and is pronounced ‘guh-noo’.) Variants of the GNU operating system, which use
the kernel Linux, are now widely used. The Debian Project is an association of
volunteers. A large part of the basic tools that fill out their operating system come from
the GNU project. The Debian distribution contains a large number of software
packages and each has a maintainer who is primarily responsible for keeping the
package up-to-date, tracking bug reports, and communicating with the author(s) of the
packaged software. It’s most popular to install Debian from a CD that you buy for the
price of the media, but you can also download on the Internet.

INTRODUCTION & ENVIRONMENT Pg. 3

SUSE Linux
SUSE Linux is created by the openSUSE project, a Novell-sponsored community
project dedicated to driving Linux adoption everywhere. Through openSUSE.org, you
may download a free version (unsupported) from any one of over 100 mirror sites
worldwide. The free offering allows you to use the latest open source desktop, server
and application functionalities. There are supported versions and these fall under the
categories of Personal and Enterprise. For example, new users to Linux might elect the
current Personal version which includes complete end-user documentation, installable
media for x86 and x86 64-bit systems, plus 90 days of end-user installation support.
The Enterprise versions are those more suitable to larger networked business
applications.

Fedora Project (Red Hat)
The goal of the Fedora Project is to work with the Linux community to build a complete
general-purpose operating system exclusively from free software. It is also a proving
ground for new technology that may eventually make its way into Red Hat products. It
is not a supported product of Red Hat, Inc. The project will produce time-based
releases of Fedora Core about 2-3 times a year with a public release schedule. Fedora
downloads through Red Hat will initially focus on the x86 family of architectures. Fedora
Core releases will be available as ISO images for both CDs and DVDs, and will
also be available through other channels such as third-party online sales of physical
media (or as inserts to textbooks). Fedora downloads are available at
www.redhat.com/en_us/USA/fedora/

Red Hat Enterprise
Within NWS Red Hat Linux has generally been the Linux of choice and more than one
release version is in use. Red Hat versions 7.x, 8 and 9 were designed as a vehicle for
distributing the latest open source features to developers, enthusiasts and early
adopters. Downloads were available free-of-charge and support was offered for a price.
As Linux has matured the demand for a product that is designed for commercial IT
deployments has grown. In response Red Hat has developed the Red Hat Enterprise
Linux product family sold by annual subscription (see
www.redhat.com/en_us/USA/rhel/). Enterprise includes a much longer release cycle,
18 months. Additionally products are all supplied with a year of support, and customers
can continue to obtain support of any release for 7 years after release.
The Enterprise versions:
 Server solutions
Red Hat Enterprise Linux AS
The top-of-the-line enterprise server, supporting high-end and mission-critical systems.
Available with the highest levels of support.
Red Hat Enterprise Linux ES
The solution for small to mid-range servers used for the majority of today’s business
computing.
 Client solutions

http://www.redhat.com/en_us/USA/rhel/

INTRODUCTION & ENVIRONMENT Pg. 4

Red Hat Enterprise Linux WS
For technical workstation and single unit desktops/clients including software
development, power desktop, targeted client applications, and High Performance
Computing (HPC).
Red Hat Desktop
Ideal for volume client system deployments. Available in 10-unit and 50-unit packs
bundled with Red Hat Network Proxy or Satellite Server.
Note: For Red Hat manuals check out www.redhat.com/docs/manuals/

INTRODUCTION & ENVIRONMENT Pg. 5

ENVIRONMENT

OVERVIEW

The Linux operating system is really several components working in concert with
each other. This section will define some terms such as kernel, shell, and desktop.

 The kernel is the core of the UNIX/Linux operating system. It controls the
computer’s resources and allots time to different users and tasks. The kernel keeps
track of the programs being run and is in charge of starting each user on the system.
The kernel does NOT interact with the user to interpret commands. That is the function
of the shell.

 The shell is a program that the kernel runs for each user which sets up
commands for execution. When you type in a command at your terminal, the shell
interprets your command and calls the program that you want. The shell will support
multiple users, multiple tasks, and multiple interfaces to itself. The shell uses standard
syntax for it’s commands. There are several popular shells in use today. In an
interactive mode, the shell is essentially running in an endless loop. When you enter a
command and press <RETURN>, the shell assumes you are finished entering a
command or commands. The shell then parses (scans and interprets) the tokens (input
on the line separated by white space - <space>, <tab>, <return>) passed on the line. It
then tries to interpret what you entered. Before it passes what you typed to the kernel
(operating system), it must be interpreted. Commands are written to take advantage of
shell features like filename expansion, metacharacters, redirection, pipelining, and
variable replacement.

Some Commonly Used Shells

 sh BASH BASH is a Unix shell written for the GNU project. It’s name is

an acronym for Bourne-Again Shell – a pun on the Bourne
shell (see below). Bash is the default shell on most
GNU/Linux systems (including Red-Hat) and can be run on
most Unix-like operating systems.

sh POSIX POSIX-conforming command programming language and
command interpreter residing in the file /usr/bin/sh. Can
execute commands read from a terminal or a file. It
conforms to current POSIX standards. It is similar to the
Korn shell and it supports a history mechanism, job control,
and various other features.

INTRODUCTION & ENVIRONMENT Pg. 6

 sh Bourne Bourne-shell command programming language and

commands interpreter. It can execute commands read from
a terminal or a file. This shell lacks features found in the
POSIX and KORN shells, and often considered obsolete.

 ksh Korn Korn shell command programming language and commands

interpreter. It can execute commands read from a terminal
or a file. This shell, like the POSIX shell supports a history
mechanism, job control, and other features.

 csh C-shell A command language interpreter that incorporates a

command history buffer, C-language-like syntax, and job
control facilities.

 rsh Restricted POSIX

A restricted version of the POSIX or Bourne shell command
interpreter. It sets up a login name and environment whose
capabilities are more controlled than normal user shells.

On a fully operational Linux system, before you deal directly with the shell you will
interact with it through a graphical user interface (GUI) that runs as part of the desktop
environment. The desktop environment creates a common graphical user environment
and development platform. The desktop refers to the windows, pop-up menus, panels,
icons and all the other graphical components on your screen. The purpose of the
desktop is to make the operation of your computer easier; for example by making user
applications, such as word processors, spreadsheets, and Web browsers, available
through icons. Most Red Hat users are familiar with the highly developed, interactive
Gnome desktop environment. Red Hat Linux also provides an alternative desktop
environment called KDE that is used in AWIPS.

Red Hat has made the “look and feel” for both GNOME and KDE very similar.
For example, the Red Hat icon represents the main menu for both desktops. The
panel (at the bottom of the desktop screen) is similar as well. It starts the same five
applications, a viewer for virtual desktops, an area to show running programs and a
clock. System Tools, System Settings, and Server Settings accessed from the main
menu are the same on both desktops. Both KDE and GNOME start with Home, Start
Here, and Trash icons on the desktop, but KDE will have one additional. Although the
desktops look alike they are very different. KDE has more tools to configure
preferences and has more integrated applications. GNOME is more streamlined and
offers a simple, efficient desktop for users.

INTRODUCTION & ENVIRONMENT Pg. 7

The Gnome desktop before logging in.

The Gnome desktop after logging in.

The desktop will make available working space and a number of icons and menus from
which to start Linux activity. The Gnome environment under Red Hat Linux Enterprise 3
is shown above. You see the desktop window and working space, icons, and in this
case where the user has opened up a terminal window to submit shell commands.

The exact way the desktop environment will be presented will vary from Linux
implementation to Linux implementation. [Note in the exercises you will perform on the
NWSTC student server as part of this course, you will not be using a desktop
environment at all, rather you will be entering shell commands through a text-only
remote shell access program). We’ll present a few samples screen here from Red Hat
Linux Enterprise 3, but be aware another system’s desktop may look and function
differently.
As we examine some sample screens, we’ll start with the desktop icons, again these
appear the same for Gnome and KDE:

student1's Home

 Double-click on this icon -------->

When either desktop starts, these three icons will appear in the upper-left portion of the
screen. The top one represents the home directory for username’s account, in this case
student1. Double-click on this icon and a file manager program will display the contents
of student1's folder….

INTRODUCTION & ENVIRONMENT Pg. 8

INTRODUCTION & ENVIRONMENT Pg. 9

In Gnome the file manager is called Nautilus.

In KDE the file manager is called Konqueror.

.

You can view file manager displays in list format by clicking on View on the top menu.

From either display you can double-click on files to open them

The File menu option will, among other things, let you open a selected file (for example
edit a text file); or by selecting Properties off the File menu you can get file information
such as dates and permissions….

Though not shown, another highly useful Nautilus menu option is Edit, where among
other things by choosing Preferences you can select to include hidden files in the files
display. Hidden files are also called ‘dot files’ since the file names begin with a period.
(We’ll discuss file types, properties and operations in detail in another module).

INTRODUCTION & ENVIRONMENT Pg. 10

INTRODUCTION & ENVIRONMENT Pg. 11

Start Here

 Double-click on this icon –>

The “Start Here” icon in either desktop offers these three areas to work on: Applications,
Preferences, and System Settings. The Gnome window is displayed as shown on the
next page:

Panel at bottom of screen

 This is the GNOME panel (KDE very similar). This is the portion of the screen
that allows you to manage your desktop. Some of the functionalities available include:

 1. Starting applications
 2. Seeing which programs are active

 There are many ways to change the panel. You can add applications or
monitors, modify the placement of icons, or change the behavior of the panel itself.

 Right-click in any open space on the panel and the Panel Menu will appear.
From this Panel Menu you can perform the following:

1. Add/remove some application icons to the panel.

2. Change position, size and background of the panel.

3. Add panels to your desktop.

Red Hat Main Menu

 This is the Red Hat desktop menu launcher button, more
commonly known as the main menu icon. Clicking on this icon will
bring up the main desktop menu. This menu has a set of
applications that can be launched or started from the desktop.

INTRODUCTION & ENVIRONMENT Pg. 12

INTRODUCTION & ENVIRONMENT Pg. 13

Red Hat Main Menu (KDE)

A right-pointing arrow on the right of a selection line indicates that there is another pop-
up with more choices. Click on that selection and the next pop-up screen will appear.

 For example, click on accessories and the pop-up will appear as shown here.
Click on “Accessories”, then in the new pop up window click on “More Accessories”.
The next window has no right arrows so there are no more sub-menus.
We will of course explore many of these menu options throughout the course.

For now, note that you can open a terminal window (text window) by selecting Terminal
from this list by going to System Tools. In Gnome this can also be done by right-clicking
on the desktop and selecting New Terminal from a pop-up menu.

 And another very useful everyday option…

Find Files (under Gnome “Search for files” provides like functionality though with fewer
optons):

Back to the panel.…

Web Browser

 Click on this panel icon and the Mozilla web browser will
automatically start up. The Mozilla software package includes a web
browser and other client software for reading mail, participating in
newsgroups, and creating web pages.

E-mail

Evolution is a program that allows you to get your e-mail,
manage your messages, and send messages. Evolution is the
preferred application for sending and receiving e-mail messages in Red
Hat Linux. Of course, your WFO or RFC will be using some other
product for e-mail.

INTRODUCTION & ENVIRONMENT Pg. 14

INTRODUCTION & ENVIRONMENT Pg. 15

Writer

Click on this panel icon and OpenOffice Writer will automatically

start. Writer is a word processing application that can work with
documents using several different formats. It has a full set of features
including, templates, fonts, file navigation, images and effects, besides
doing a table of contents.

Impress

Click on this panel icon and OpenOffice Impress will
automatically start. OpenOffice Impress is a presentation application
that has several types of slide effects. You can create and save
presentations in Microsoft Powerpoint, StarDraw, and StarImpress
formats.

Calc

Click on the above panel icon and OpenOffice Calc will

automatically start. This is a spreadsheet application that will incorporate
data from Microsoft Excel, StarOffice, Dbase, and several other formats.
You can create charts, set up database ranges, and use data arranged
from different points of view.

Print Manager

Click on thi panel icon and the print manager will automatically

start. This application can be used to add or remove printers and
printer queues, There are no graphical tools to start printing. You can
start a printing from a command in a terminal window.

Workspace Switcher

This is a feature that provides four virtual workspaces (or
desktops). The idea of virtual desktops (not virtual consoles as
examined earlier in this chapter) is to give you more space to run
applications than will fit on one physical screen. Changing from
one desktop to another is very simple. Just click on the desktop
you want (in KDE they are numbered 1, 2, 3, or 4). The current

desktop will disappear and you will move to the full screen for the one you selected. Of
course you can still have multiple terminal windows within any virtual desktop. Here are
some things you can do with a workspace switcher:

 1. Choose the current workspace. Simply click in the virtual workspace and
 it will become the current workspace.

 2. Click any window, represented by the small rectangle in the workspace,
 and drag-and-drop it to another workspace.

 3. Right-click the switcher, select preferences and create up to 32
 workspaces.

Window List

The window list area on the panel shows the
tasks that are currently running on the desktop.
So in this example, the trash application is
currently running and there is a terminal
window open for student1 on the current host,
ntc234.

Clicking a task can either make the task minimized or maximized.

Red Hat Network Alert Notification

The round icon with the exclamation point is ready to help you check for
critical updates to Red Hat Linux, for a price! After agreeing to the
Terms of Service, the service will check for updates that might be
available. If none are available, the red icon turns blue.

INTRODUCTION & ENVIRONMENT Pg. 16

INTRODUCTION & ENVIRONMENT Pg. 17

The Terminal Window

 Access to the shell from either the Gnome or KDE desktop’s is trough a terminal
window. A terminal window can be made available by right-clicking on open desktop
space and selecting “Open Terminal” from the presented menu. The details of what is
being done in this window is irrelevant for this course; the important thing to note is that
by opening a terminal window you will be presented with a shell prompt from which to
enter shell commands.

 (To get more information on Linux desktop environments it is
suggested at this time to do an internet search on the terms “gnome”, and “kde” ; or get
on a local system and explore the desktop screens, menus, and icons by yourself.)

USERS
 As suspected, before being allowed access to either the desktop or a text shell
session, you need to prove you are an authorized user, by supplying a username and
password at a prompt. The user is, loosely translated, the human being pressing the
keys. Humans wanting access to LINUX must have a username and password. This
mechanism allows humans access to the system. The username is assigned by the
system administrator. There are two types of user accounts, regular user and
superuser. The superuser account (username “root”) has special access and privileges
for configuring and administering the system. Be forewarned that these privileges can, if
misused, damage the system, possibly irreparably. After entering the user name you
will be prompted for the password. [Note: On most Linux systems the user name you
logged in as appears as part of the prompt as a reminder to you; otherwise on any
LINUX/UNIX system you can see who you are with the ‘whoami’ command or see all
users logged onto the system with the ‘who’ command.]

 The following chart diagrams the relationship between a user login shell, UNIX
commands, the operating system kernel, and hardware interrupts.

INTRODUCTION & ENVIRONMENT Pg. 18

INTRODUCTION & ENVIRONMENT Pg. 19

BASIC SHELL FEATURES

WHAT SHELL IS USED AND HOW IS IT IS EXECUTED

 When we say a user is a BASH shell user, we mean the command displaying
their systems level prompt, and accepting their commands is sh executing in an
interactive mode.

As we’ve said, in interactive mode, the shell is essential running in an ENDLESS
LOOP. When you enter a command and press <RETURN>, the shell assumes you are
finished entering a command(s). The shell then PARSES (scans and interprets) the
TOKENS (input on the line separated by WHITE SPACE - <SPACE>, <TAB>,
<RETURN>) passed on the line. It then tries to interpret what you entered. Before it
passes what you typed to the operating system, it must be INTERPRETED. Command
line syntax such as wildcards, metacharacters or filename expansion, and such, must
be resolved before the command itself is actually executed. The shell, not the
command, does these types of functions. Commands are written to take advantage of
shell features like filename expansion, metacharacters, redirection, pipelining, and
variable replacement (further discussion of these things will occur later in the course).

WHY LEARN A COMMAND LINE INTERPRETER?

One issue of importance is the fact that graphical user interfaces will not always be
available to the user, and thus dealing directly with the shell may be a requirement. This
is especially true when doing Systems Administration. Users who interact with the Linux
operating system via a command line interpreter must also be able to understand and
manipulate their environment before learning higher level skills such as reading, writing,
and modifying shell programs, or shell scripts. Luckily, shell environment and
programming concepts are transferable - if you learn one shell others will come easier.

BUT I’M NOT A PROGRAMMER!

 As we’ve said, when you log onto the system you are already running a LINUX
command called sh in an interactive mode. Like any procedural programming
language, you are entering one command at a time in a serial fashion. The only real
difference between this and running a string of commands serially in a batch mode is
that it is easier in the batch mode. Making use of the batch mode and scripts the user
can use programming constructs like decision making commands (IF the answer to
my question is true, THEN do this, ELSE do that), and looping mechanisms (WHILE
something is true DO this) to repeat commands. (more on that in a later module)

INTRODUCTION & ENVIRONMENT Pg. 20

You should know that you can change your login shell (the shell given to you at initial
login) without the intervention of the Systems Administrator (SA) using the chsh
command. The SA can restrict which programs or “shells” you chose. This command is
not universally available in the UNIX world; on some systems, you may have to ask the
SA to change it for you.

SHELL COMMANDS

Commands are entered one at a time at a shell prompt – like:

 $ ls fn*

$ ls -l > listing
 $ ls -l | grep listing

 These may look like a lot of gobbly-gook now, but you’ll learn not only how to
read these but also how to enter them, along with many many more. The above
command examples are not all that meaningful except to illustrate that any given
command can be used in a number of ways. The commands above actually have
multiple operations (tokens) being called for on each line. The question is what happens
first ?

 There is a specified order in which tokens are interpreted:

 1. I/O redirection
 2. Control operator
 3. Newline
 4. Reserved word
 5. Identifier
 6. Word
 7. Here document

We will not go into the definitions of each of these at this point, and The man page and
other reference materials listed at the end of the module and subsequent modules have
more detailed explanations of these. As you become a more experienced user you will
become familiar with the nuances of this concept.

INTRODUCTION & ENVIRONMENT Pg. 21

One item worth noting, as often a new user will stumble upon this by accident is the
concept of a secondary prompt (presented as the character >). If a token is
incomplete, a secondary prompt (PS2) will appear. The example below is incomplete
because one of the parsing rules being applied is the expectation of a closing quote. In
English, we know that this single quote is an apostrophe used for denoting a
contraction, but according to the rules of most shells this is forbidden. Your choice is to
interrupt the command or provide the expected token keyword.

 $ echo Don't
 > # Secondary prompt (PS2)

We only note this of significance at this point to illustrate you may potentially enter a
command without all the correct components and be left scratching your head at the ‘>’
prompt. To get out of such a pickle you simply need to complete the command at the >
prompt by supplying whatever was missing on the original command line. If you are
unsure then entering a CTRL C, will stop the process and return you to a $ prompt.
In the case above entering a closing single quote will complete the command and
display Dont

MORE THAN ONE KIND OF COMMAND

There is more than one class of commands that the shell knows how to interpret and
pass on to the operating system for execution. We will deal with each in detail later.
The precedence for the POSIX shell is:

 1 reserved word 3 built-in
 2 alias 4 function
 5 pathname resolution/other

This is important to know for even a beginner. For instance, you can get yourself in
trouble by ALIASING a “real” command program that resides on the disk, as the real
command will never be executed and might lead to unexpected or erroneous results.

RESERVED WORDS

Reserved words (Keywords) hold special meaning to the shell and are used in various
programming constructs common to most programming languages.

INTRODUCTION & ENVIRONMENT Pg. 22

 ALIASES

Bash, C, Korn, and POSIX allows the System, Superuser, or the user to define
commands by new names.

To display any aliases set in your environment enter:

 $ alias

If you create an alias on the command line, it is only good for this login session. When
you log back in, it will be gone. If you want it set each time you log in, you can put it in
your personal startup file - $HOME/.bashrc, or the SA can put them in a system-wide
file.

There are two other kinds of aliases - preset and tracked. Preset are system-
dependent and users cannot change them. They are created when the software is
installed. Tracked aliases essentially are resolved pathnames for commonly used
commands and are also created by the shell.

It is a bad practice to use personal or system-wide aliases inside shell scripts.
You might not even be able to pass your programs to other users on the same machine
if they are defined outside the shell script. It also makes it very difficult to read and
understand the program since there are no man pages defining the aliases.

 The first word of each command is replaced by the text of an alias, if an alias for
this word has be defined. An alias name consists of any number of characters
excluding metacharacters, quoting characters, file expansion characters, parameter and
command substitution characters, and =. The replacement string can contain any valid
shell script, including the metacharacters mentioned above. Aliases can be used to
redefine commands, but cannot be used to redefine keywords. Aliases are frequently
used as shorthand for full path names.

We’ll learn how to define your own aliases in a later module, for now you can see
the aliases already defined for you with the alias command:

 $ alias
 history='fc -l'
 stop='kill -STOP'
 suspend='kill -STOP $$'
 ll='ls -l'
 $

INTRODUCTION & ENVIRONMENT Pg. 23

BUILT-IN COMMANDS

Built-in commands are called directly from inside shell code. Commands like pwd
usually are part of the operating system available to other shells and procedural
programming languages. They reside on the disk as separate executable binaries from
the shell. They are usually commands that are used frequently. Instead of making a call
to execute another program outside the shell, it is more efficient to call them from inside,
or even emulate them internally. Sometimes their behavior is slightly different than the
operating system commands of the same name. One way of being sure to get the
operating system version of pwd is to enter the absolute (full) pathname to the
command. Other built-ins like read only have meaning only when used inside a shell
process and are not available to other shells.

FUNCTIONS

Bash, Bourne, KORN shell, and POSIX shell allow you to create your own commands.
They can be stored in the same shell script file or called by EXEC’ing a file containing
functions inside the same process space (. .function_file). This is similar to how
procedural languages share reusable code in library archives. The function must be
defined before used. Use entails only invoking the name as you would any other
command. Some SAs provide libraries of locally-written functions for system-wide use.
The advantage of functions over aliases is that they can contain very complicated code,
pass run-time arguments more easily, and may be used over again in one or more
programs. They are stored on disk, instead of only in memory so they are not as
volatile. Rather than re-enter lines of code everywhere, you just call what appears to be
a single word command with perhaps some command line arguments.

PATHNAME RESOLUTION/OTHER

When you type in a command the shell searches all of the above classes of commands
first. If not found inside the shell, it searches LEFT to RIGHT through the directories in
your PATH variable for an executable program file by the name given. If not found,
you will get an error message like "sh: lx not found". The "lx" command may still be
on the system in a directory not included in your PATH, or may not be executable.

SECURITY NOTE: If you always want your current directory searched, place the
current directory (.) at the end of the PATH. Never do this with the superuser
account. The danger with this practice is that someone may plant a Trojan horse in
the current directory with the same name as a common command. Placing it at the tail
end of the PATH ensures that the real command will be found first.

INTRODUCTION & ENVIRONMENT Pg. 24

Understanding Processes

 Another term we need to define is process. A process is the execution of a
command by Linux. Whenever you open a Linux shell and/or run a command, a script,
or a program, a process is started. Processes can also be executed by the operating
system itself. The process structure is hierarchical. It contains parents, children, and
even a root. A parent can fork (or spawn) a child process. That child can, in turn, fork
other processes.

The kernel manages the processes, switching back and forth among them according to
their needs and priorities. As we said, a process can create other processes; the
creator is the parent process and the processes created are child processes. Certain
system processes called daemons reside in the system more or less permanently and
perform ongoing tasks such as handling mail, scheduling tasks that should be
performed at regular intervals, and transferring files from the print queue to printers.

By creating multiple processes, you can run several programs at once. For example,
suppose you want to execute a program that takes a long time to complete. You can
run the program at a low priority in the background and do something else at the
terminal while it is running. Some shells provide a facility called job control that lets you
switch back and forth among processes.

A process is the execution of a command by the Linux system. The shell that starts
when you log in is a command, or a process, like any other. When you run a Linux
utility or command, a process is initiated.

INTRODUCTION & ENVIRONMENT Pg. 25

JOB CONTROL

Job control is a facility, that enables you to control processes from your terminal, using
“control signals”:

 Commands that allow the user to control the state of a process.

 ^C (Control-C) Interrupts or aborts the command

 ^D (Control-D) Quit shell or program

 Commands that control output to the terminal.

 ^S (Control-S) Suspend output to the monitor

 ^Q (Control-Q) Resume output to the monitor

There job controls have many uses, but are most commonly used to interrupt a run-
away script/program or run-away output. As a new Linux user you may enter an
erroneous command that requires such interruption.

INTRODUCTION & ENVIRONMENT Pg. 26

PROCESS ID

 The first thing the operating system does to begin execution is to create a single
process, called “init”, The init process holds the same tree position as the root directory
in the file structure. The init process is the ancestor to all processes that each user
works with. It forks a process for each terminal or desktop session. Whenever a user
logs in, Linux copies the shell program from system disk into memory. When it is in
memory, the shell begins executing, and it becomes a process that lasts until you log
out.

When you give the shell a command, it (referred to as the parent) usually “forks” (or
spawns) a child process to execute the command. While the child process is executing
the command, the parent process sleeps. While a process is sleeping, it does not use
any computer time; it remains inactive, waiting to wake up. When the child process
finishes executing the command, it dies. The parent process (which is running the
shell) wakes up and prompts you for another command.

Linux assigns every process a unique number, known as a process identifier (PID). The
PID can also be shown with the process status (ps) command. We said that init is the
first/initial process started by the system and thus is the parent to all other processes.
And so you may be able to guess it’s Process ID – 1 .

As long as a process is in existence, it keeps the same PID number. During one
session, the same process is always executing your login shell. When you fork a new
process (execute a command, etc) the new (child) process has a different PID number
from its parent process (PPID). When you return to the login shell, you will find it is still
being executed by the same process and has the same PID number as when you
logged in.

INTRODUCTION & ENVIRONMENT Pg. 27

Displaying the Processes

The ps command will display system processes. You can use the ps command to obtain
the process id number (PID). Because processes rapidly progress in their execution,
this report is only a snapshot real-time view of what was happening when you entered
the ps command.

The command ps will show your processes, ps -f will provide a full/verbose display, and
ps -ef willl show all processes active on the system.

[student1@ntc237 student1]# ps -f
 UID PID PPID C STIME TTY TIME CMD
student1 28325 663 0 17:30:20 pts/1 0:00 bash
student1 28326 28325 0 17:30:21 pts/1 0:00 ps -f
[student1@ntc237 student1]#

 UID refers to the user identifier

 PID refers to the process identifier

 PPID the process identifier of the parent process (the process that

spawned this process)

 C shows processor utilization for scheduling (i.e., CPU time)

 STIME the starting time of the process

 TTY the controlling terminal for the process

 TIME the cumulative execution time for the process

 CMD the command name

(It should also be noted that In a Red Hat Linux Gnome session you can get a GUI
display of the same information via gnome-system-monitor (issued from the
command line) or Redhat | System Tools | System Monitor – then selecting the
Process Listing tab).

INTRODUCTION & ENVIRONMENT Pg. 28

Looking at the display again you can trace the lineage of a forked process – notice that
the PPID of the second process (ps –f) in the box below is the same as the PID of the
first one (bash). This indicates that the “ps –f” was forked/spawned by the first –
student1 started a ps command from a bash shell.

[student1@ntc237 student1]# ps -f
 UID PID PPID C STIME TTY TIME CMD
student1 28325 663 0 17:30:20 pts/1 0:00 bash
student1 28326 28325 0 17:30:21 pts/1 0:00 ps -f
[student1@ntc237 student1]#

 There are several flags used with the ps command, giving different results:

 -f Lists UID, PID, PPID, C, STIME, TTY, TIME, etc... (man ps)
 -e Shows status of all processes
 -l Long listing
 -a Lists all processes associated with a terminal port
 -g Lists processes for a specified group
 -u Lists processes for a specified user

Some times one of your processes may get stuck and you'll need to kill it. Often the job
control mechanisms noted at the beginning of this section may do the trick. However, if
the stuck process is not in control of your terminal, you can use the ps command to get
its number and the kill command to remove it. (If you cannot regain control of your
session you may have to contact the System Administrator and have them kill the
process.)

 $ kill {PID} (eg. $ kill 28325)

INTRODUCTION & ENVIRONMENT Pg. 29

Signals and codes for the kill command:

The kill command actually works by sending a signal to the system to stop operations
with the indicated process. There are various ways (signals) that can be sent to the
system. These are called by their number (0 thru 30+). The CTRL commands actually
send these signals to the system. We will discuss the signals 3, 9, and 15.

 signal 3 Terminal quit (with a memory dump)

 signal 9 Process kill. Care should be taken when using this signal. Issuing

kill -9 will kill the process WITHOUT the housekeeping of signal 15.

 signal 15 This is what would be known as an orderly shutdown or Software

termination. When this is issued the system will do some "house-
keeping", closing files and ending processes.

$ kill –{signal} {PID} (eg. $ kill -9 28325)

If you must use the kill command, the default is 15. Signal 9 should be a last resort,
files can be left open or damaged.

To find out more about signals and codes, you can do a man page of "signal" or the
command kill -l will produce a list of signals.

INTRODUCTION & ENVIRONMENT Pg. 30

MANIPULATING YOUR HISTORY FILE

Use mechanisms to repeat and edit previous commands stored

During the course of your Linux work you will often have a need to repeat a command
you entered earlier. You may want to repeat it verbatim or repeat it with some
modification. A log of everything you type on the command line before pressing the
<RETURN> key, including your typos, is kept in a history log file. By default this is file
$HOME/.bash_history, in which up to a 1000 commands will be stored.

Later we’ll introduce the ‘cat’ command to look at the contents of file and thus you can
view your commands with ‘cat .bash_history). However it may be more convenient to
read the file with the history command. When history is run, it assigns a unique
sequential number to each command for optional use in retrieval.

Using the history command

 $ history
 276 more /etc/passwd
 277 echo $HISTSIZE
 278 echo $PATH
 279 pwd
 280 cd /home
 281 history 1

The most convenient method of recalling, and optionally editing, previous
commands directly on the command line – is simply by pressing the up-
arrow key. This will present to your previously entered commands from the
most recent backwards with each press of the key. Once the desired
command is displayed it can simply be reentered as is, or modified and
then resubmitted from the displayed command line.

INTRODUCTION & ENVIRONMENT Pg. 31

LOGGING OUT OF AN ASCII SESSION

In a desktop session you will typically logout by clicking an EXIT or logout/logoff icon.
In an ASCII terminal session (eg. PuTTY or ssh), you simply type in the command exit
back in your original login sh process or close the connection altogether. This, or
<CTRL> d on some systems, is an End of File signal to the interactive shell process
started when you logged in. It tells the shell that there are no further instructions. It
ends itself and as you have no other process running your terminal session is
disconnected.

REMOTE ACCESS

In a networked environment you can run an application or even a shell session on a
remote computer by starting it there, but having it displayed on your local display. You
can have access to files, printers, backup devices, and all other resources on the
remote computer as though you were on that computer.

SSH can provide a secure mechanism for logging into a remote system, it also provides
a way to run graphical applications securely. After you login using ssh, you can use that
secure connection to forward the graphical application back to your display. You will use
a form of ssh (PuTTY) to do the practical portions of this course.

In this example the application gedit is running on the remote computer ntc232 but is
being displayed on the local computer ntc234.

[root@ntc234 root] # ssh -l student1 ntc232
student1@ntc232's password:
[student1@ntc232 student1]$ gedit

INTRODUCTION & ENVIRONMENT Pg. 32

The remote session however does not have to be a GUI presentation. It may be text
only, as will be the case with the student server on which you will do your practical
exercises.

Your network identity can be displayed with the hostname command:

 # hostname

Note: Depending on the Linux implementation and the configuration of the system,
hostname will report the ‘official’ host/network/system-name, the system’s ip-address or
both.

INTRODUCTION & ENVIRONMENT Pg. 33

Other settings of interest may be your gateway address and your DHCP (Dynamic Host
Configuration protocol) settings (neither of which are presented here). Your network
administrator is the source of information for your specific settings.

 (The details of how networking works is beyond the scope of this
course. To get more information it is suggested to do an internet search on the terms
“TCP/IP”, and/or complete the NWSTC Distance Learning courses on that topic (see
http://www.nwstc.noaa.gov/d.train/selfstudy.html).

http://www.nwstc.noaa.gov/d.train/selfstudy.html

INTRODUCTION & ENVIRONMENT Pg. 34

 WHERE TO GET HELP: ON-LINE DOCUMENTATION
 OVERVIEW

 What is a man page? The man pages are the official documentation for the UNIX
operating system. All commands, arguments to commands, file formats, subroutines,
library functions, utilities, tools, etc. are documented in the man pages.

 Man pages can be searched via a title or keyword. To read a man page, type
man command. The man command will display on-line documentation about the
command and its usage. Each man page contains structured documentation about the
command it describes. [Note: Exit the man command with a “q”]

Accessing a Man Page

 Man pages can be searched via a title “man man” or keyword “man -k manual”.
The man page for man will describe how to use the man command.

$ man man

man(1) man(1)

NAME
 man – format and display the on-line manual pages

SYNOPSIS
 man [-acdfFhkKtwW] [--path] [-m system] [-p string] [-C config_file]

[-M pathlist] [-P pager] [-S section_list] [section] name …

DESCRIPTION
 man formats and displays the on-line manual pages. If you specify
 section, man only looks in that section of the manual. name is nor-
 mally the name of the manual page, which is typically the name of a
 command, function, or file. However, if name contains a slash (/)
 then man interprets it as a file specification, so that you can do man
 ./foo.5 or even man /cd/foo/bar.1.gz

 See below for a description of where man looks for the manual page
 Files.

OPTIONS

 -C, config_file
 Specify the configuration file to use; the default is
 /etc/man.config. (See man.config(5).)

INTRODUCTION & ENVIRONMENT Pg. 35

 - More - (11%)

 The message - More - (11%) Means you have viewed 11% of the file, and
89% remains. Some systems will just display - More -.
...

SEE ALSO
 apropos(1), whatis(1), less(1) gruff(1), man.conf(5)

BUGS
 The –t option only works if a troff-like program is installed
...
$

Sections include: NAME (used in man -k keyword search) and DESCRIPTION – a
summarization of the purpose of the command . The SYNOPIS section tells how the
command is to be used syntactically from the command line. OPTIONS explains the
use of each option/parameter/argument. SEE ALSO is important as it will tell you of
related files and commands. Depending on the man page you may also see
EXAMPLES, WARNINGS, BUGS, and other pertinent information.

A few conventions are used:

 Computer font strings are literals, and are to be
 typed exactly as they appear in the manual (except
 for parameters in the SYNOPSIS section of entries
 in Sections 2 and 3)

Try it now or try it later – you can try the man command by following the
instructions for lab 1 (at the end of the module) on the NWSTC UU133 student server.

INTRODUCTION & ENVIRONMENT Pg. 36

Another example:

$ man date

DATE(1) User Commands DATE(1)

NAME
 Date – print or set the system date and time

SYNOPSIS
 date [OPTION]… [+FORMAT]
 date [-u| --utc| --universal] [MMDDhhmm[[CC]YY][.ss]

DESCRIPTION
 Display the current time in the given FORMAT, or set the system date.

 -d, --date=STRING
 Display time described by STRING, not ‘now’

 -f, --file=DATEFILE
 Like - -date once for each line of DATEFILE

 ...

SEE ALSO
 The full documentation for date is maintained as a Textinfo manual. If the
 Info and date programs are properly installed at your site, the command

 Info coreutils date

 Should give you access to the complete manual

...
$

 Note the SEE ALSO section in this example . This offers you other man pages to

try for your information needs. In this case more information can be obtained
through the use of the ‘info’ command

INTRODUCTION & ENVIRONMENT Pg. 37

Another thing to note is the use of (#) by a command - eg. date(1) . The #
indicates the “section” of the man pages which contains the information. For
example information about commands is in section 1, while information about
files is in section 5.

 Red Hat Man page documentation sections include:

 0 Everything
 1 Commands
 2 System Calls
 3 Library Functions
 4 Special Files
 5 File Formats and Conversions
 6 Games for Linux
 7 Macro Packages and Conventions
 8 System Management Commands
 9 Kernel Routines

 Using the proper section is important. For example there is a command named

‘passed’ and a file named ‘passwd’ . The default for the man command is to look
in section 1. Thus if you enter :

$ man passwd

You will get the man page information for the passwd command but
no information about the passwd file. To get information about the file you
would have to specifiy:

 $ man 5 passwd

INTRODUCTION & ENVIRONMENT Pg. 38

Keyword Search

 If you don’t know what command or file to locate the information you need, you
can do a keyword search off all the man pages.

In the following example, the command returns all the man page names that
contain the string “lp” (but note that this would also include words like “help and
HelpTag”).

$ man -k lp
 bos apropos (apropos") - Shows each help entry containing a specified string
 bos help (help") - Shows syntax of specified bos commands or lists functional
descriptions of all bos commands
 cm apropos (apropos") - Shows each help entry containing a specified string
 cm help (help") - Shows syntax of specified cm commands or lists functional
descriptions of all cm commands
 dfstrace apropos (apropos") - Shows each help entry containing a specified string
 dfstrace help (help") - Shows syntax of specified dfstrace commands or lists
functional descriptions of all dfstrace commands
 dtmailpr(1) - electronic mail message print filter
 fts apropos (apropos") - Shows each help entry containing a specified string
 fts help (help") - Shows syntax of specified fts commands or lists functional
descriptions of all fts commands
 help (1m) - Displays help information about dtscp commands.
 help1m help Displays list commands the options specified command
accept, reject(1M) - allow/prevent LP printer queuing requests
dthelp_ctag1(1) - first pass for formal SGML parse of HelpTag source
...

INTRODUCTION & ENVIRONMENT Pg. 39

Your Turn – practical exercises

It is time to log onto the NWSTC student server (204.227.127.133) and enter your
first Linux commands (using an ssh client such as PuTTY). If you need the
instructions they can be found at the following link:

http://webdev.nwstc.noaa.gov/IT/linuxessentials/linuxinstr.html

It is rare that there is one correct solution to performing a task in a Linux/UNIX
environment, only some that are faster, shorter, less process-intensive, safer, or more
portable. Also, some of these exercises were written to fail, so that you would know
what happens when bad things happen to nice people. Most of the errors shown are
everyday problems for beginners. In any case you are encouraged to EXPERIMENT in
this course and try various commands, so that you SUCCEED in the field. In the
process you will learn problem-determination procedures. As an end-user, you do not
have the access permissions to cause fatal system problems, so use this opportunity to
experiment. Most importantly – DO NOT enter the commands robotically without trying
to understand them in the process. Your success at further Linux training and actual
work in the field is wholly dependant upon grasping the subject matter in this course.

http://webdev.nwstc.noaa.gov/IT/linuxessentials/linuxinstr.html

INTRODUCTION & ENVIRONMENT Pg. 40

EXERCISE 1 - SHELL ENVIRONMENT

Purpose: This exercise is designed to familiarize you with basic shell concepts

1. After logging in try your first commands (we’ll only list the command you
should enter (in bold) after the $ sign, neither the full prompt or the result of the
command will be in this text; press ‘Enter’ to execute each command):

 $ pwd

 $ date

 $ whoami

 $ who

 $ id

 $ hostname

2. Recall that we stated earlier that on occasion you may see a secondary
prompt if the shell determines that your command entry is incomplete. Let’s
see an example:

 $ echo Don't
 >

If you enter <CTRL>c, a software interrupt is sent to the sh process to abort
the operation. If you understood that the shell was looking for a closing single
quote you could have completed the command with a second single quote (try
it if you like).

INTRODUCTION & ENVIRONMENT Pg. 41

3. Let’s look at command history

b. $ history

 The above command will show up to your previous 1000 commands.

c. Now, the simplest way to repeat a command is with the up arrow key –
 try it now

d. You can modify previously entered commands and reissue them.
 Simply recall a previous command by arrow0ing through your history;
 Then make the desired change; then press enter to re-execute the
 modified command. Try it – page back to a ‘whoami’ command (or
 submit one if there is not one in your history; then when the prior-
 entered ‘whoami’ command displayed – backspace over the ‘ami’,
 and execute just the ‘who’.

INTRODUCTION & ENVIRONMENT Pg. 42

 EXERCISE 2

1) Use find to demonstrate the use of ^S, ^Q, and ^D.

A. Start a long find command so you can suspend terminal output with ^S.
Once output starts, type ^S to suspend terminal output. Note as you are
Using a regular user account (not root/superuser) you will see many errors
Ignore them, as the purpose is simply to interrupt the output.

$ find / -exec ls -l {} \;
^S

B. Restart terminal output by typing ^Q. Once output starts, interrupt the
command with ^C, then exit the session with ^D.\

^Q

^C

$ ^D

2. Use ‘ps’ to list your processes. Use the simple format below, and then try some of
the other switches. If you need help : ‘man ps’

$ ps

INTRODUCTION & ENVIRONMENT Pg. 43

EXERCISE 3 – man

Purpose: This exercise is teach you how to use the ‘man’ pages as a help resource

Call up “man” pages for the file and command “passwd”.

$ man passwd

$ man 5 passwd

Use the ‘man’ command to call up the manual pages of any Linux commands – enter
man followed by any Linux command you have used thus far (pwd, who, date, …)

$ man _________

Pay close attention to all parts of the returned information as this will come to your
rescue time and time again.

After looking at a couple of different man pages for different commands, try a key work
search via ‘man –k’ followed by a space and then whatever keyword you’d like to find
(users, time, host, …)

$ man –k ____________

The man command can be used to get information on how to run a command, or can
give you information about the layout of configuration files. Try this …

$ man hosts

Now see if you can use the man pages to determine the meaning of all the columns of
output from the who command.

$ man who

$ info who

And now that you know how to get information on Linux commands we’ll suggest you
use the ‘man’ command to preview some of the commands that will be presented in the
next module: pwd, df, cd, ls, file, cat, more, tail, grep and find. Don’t try to understand
their syntax so much as simply identifying how they can be used.

The man pages are not the only source of help information. Many (but not all) Linux and
UNIX systems have additional information available via a command call ‘info’ (try ‘man
info’); also there are in many cases help pages contained within a GUI environment
such as Gnome. But by far one of the most helpful things actually is the internet.

Try an internet search on ‘Red Hat Enterprise bash’ and see the results

 End LAB

This is the end of this module. At this time you should
proceed to module 2.

INTRODUCTION & ENVIRONMENT Pg. 44

